Uncovering the Biosynthetic Potential of Rare Metagenomic DNA Using Co-occurrence Network Analysis of Targeted Sequences

August 26, 2019

Vincent Libis, Niv Antonovsky, Mengyin Zhang, Zhuo Shang, Daniel Montiel, Jeffrey Maniko, Melinda A. Ternei, Paula Y. Calle, Christophe Lemetre, Jeremy G. Owen & Sean F. Brady

Nature Communications volume 10, Article number: 3848 (2019)

CONKAT-seq enables the exploration of rare biosynthetic gene clusters in complex metagenomes. CONKAT-seq enables the exploration of rare biosynthetic gene clusters in complex metagenomes.

Abstract

Sequencing of DNA extracted from environmental samples can provide key insights into the biosynthetic potential of uncultured bacteria. However, the high complexity of soil metagenomes, which can contain thousands of bacterial species per gram of soil, imposes significant challenges to explore secondary metabolites potentially produced by rare members of the soil microbiome. Here, we develop a targeted sequencing workflow termed CONKAT-seq (co-occurrence network analysis of targeted sequences) that detects physically clustered biosynthetic domains, a hallmark of bacterial secondary metabolism. Following targeted amplification of conserved biosynthetic domains in a highly partitioned metagenomic library, CONKAT-seq evaluates amplicon co-occurrence patterns across library subpools to identify chromosomally clustered domains. We show that a single soil sample can contain more than a thousand uncharacterized biosynthetic gene clusters, most of which originate from low frequency genomes which are practically inaccessible through untargeted sequencing. CONKAT-seq allows scalable exploration of largely untapped biosynthetic diversity across multiple soils, and can guide the discovery of novel secondary metabolites from rare members of the soil microbiome.

More info at: https://www.nature.com/articles/s41467-019-12079-8

For research purposes only, not intended for clinical diagnosis, treatment, or individual health assessments.
PDF Download
* Email Address:

CD Genomics needs the contact information you provide to us in order to contact you about our products and services and other content that may be of interest to you. By clicking below, you consent to the storage and processing of the personal information submitted above by CD Genomcis to provide the content you have requested.

×
Quote Request
! For research purposes only, not intended for clinical diagnosis, treatment, or individual health assessments.
Contact CD Genomics
Terms & Conditions | Privacy Policy | Feedback   Copyright © 2025 CD Genomics. All rights reserved.
Top

We use cookies to understand how you use our site and to improve the overall user experience. This includes personalizing content and advertising. Read our Privacy Policy

Accept Cookies
x