CD Genomics-the genomics service company
Home / Sequencing / Genomics Sequencing / Long-Read Sequencing

Long-Read Sequencing

Bookmark and Share

CD Genomics offers cutting-edge technologies and bioinformatics analysis services of long-read sequencing, which include PacBio SMRT sequencing and Nanopore sequencing. We offer accurate and cost-effective sequencing solutions for humans, animals, plants, and microbial research.

The Introduction of Long-Read Sequencing

Long-read sequencing, also known as third-generation sequencing, is a group of booming DNA sequencing technologies that eliminate the need for traditional sequencing techniques DNA cleavage and amplification and allows for the simultaneous detection of long DNA sequences up to 100,000 base pairs. Scientists have come to realize the significance of structural variants in the human genome. Some of them are insertional variants that exceed the read length of many sequencing technologies; some are repetitive regions that make sequence alignment difficult; and some are GC-rich regions, which often leave many inconveniences in studying structural variants by short-read sequencing methods.

In recent years, novel technologies that can detect long-read sequences have emerged, providing researchers with new strategies and tools for genome analysis. Among them, the most representative and widely used are PacBio SMRT sequencing and Nanopore sequencing. Long-read sequencing technologies can produce very long reads, which is not possible in next-generation sequencing.

PacBio launched the sequencing platform of single molecule real time sequencing (SMRT), which uses a customized flow cell with lots of zero-mode waveguides to sequence single molecules in real-time (ZMW). The polymerase is attached to the well's bottom and enables the DNA strand to pass through the ZMW. Real-time imaging of fluorescently tagged nucleotides synthesized alongside specific DNA template molecules is possible with SMRT sequencing. When the framework and polymerase separate, the sequencing reaction is complete.

The core elements of Nanopore's technology divide into the formation of transmembrane channels from nanopores that allow ionic currents to pass through and the measurement of the changes in current. When molecules such as DNA or RNA pass through nanopores, they cause disruption in the current. The information about the changes in current can be used to identify the molecule. It sequences the whole DNA/RNA molecules directly.

Key Features and Advantages

  • Long average read lengths and high consensus accuracy
  • Improved accuracy for repeated sequences and copy number variations
  • More accurate detection of a large number of mutations
  • Optimization of DNA extraction protocol in long-read sequencing
  • Compatible with both genome and transcriptome analysis
  • Rapid and affordable

Workflow

Service Specifications

Sample Type

  • gDNA, Total RNA, Tissue, Cell
Sequencing Strategy

  • ONT Platforms, Library: 8K, 2G/per sample
  • PacBio Platforms, 20 K library
Application

  • Gene function: Focus on samples carrying specific functions to reveal the main causes of different functions
  • Gene structure: Alternative splicing, APA, fusion gene, SSR, CDS prediction, TSS/TES identification, etc.
  • Full-length quantification: Find comprehensive and effective differential genes and identify functional genes
  • Epigenomics: Direct full-length genome and transcriptome sequencing can detect base modifications

CD Genomics provides a comprehensive long-read sequencing service package including sample preparation, library construction, SMRT sequencing and/or Nanopore sequencing, and bioinformatics analysis. We can tailor this pipeline to your research interest. If you have additional requirements or questions, please feel free to contact us.

* For Research Use Only. Not for use in diagnostic procedures.
Quote Request
Name:
Phone:
Organization:
* Email:
* Services & Products of Interest:
Project Description:
* Verification Code:
Verification code
CONTACT CD GENOMICS


SERVICES