Dual RNA-seq

There is a wide range of interactions between species, such as parasitism, symbiosis, competition, etc. The conventional transcriptome sequencing can only study the information of a single species, which not only wastes part of the data, but also affects the sample itself during the separation of two species.

Dual RNA-seq has been shown to monitor the all classes of coding and noncoding transcripts of both host and pathogen simultaneously. CD Genomics is offering a high-resolution, affordable and straightforward dual RNA-seq service to provide direct insight into host–pathogen interplay.

By constructing only one transcriptome library, dual RNA-seq of total mixed RNA following double rRNA depletion or poly(A) capture allows sequencing and analyzing two (or more) species at the same time without the need to separate the species, thereby revealing the dynamic changes in gene expression between them. Meanwhile, through the interaction model diagram, to obtain the regulatory relationship of genes and the interaction mechanism between two species; to investigate the regulatory network in the interaction process, the mechanism of pathogen infection and the host resistance to disease; and to investigate the evolutionary relationship of pathogen among different species, and further explore the positive selection of related genes based on homologous genes.

CD Genomics could deal with various invasion models-- pathogens involving bacteria, fungi, protozoa, etc., host could be a mammal or plant. We are aiming to provide comprehensive dual RNA-seq services from experimental design to biocomputational analysis to support your research needs.

Key Advantages and Features

  • Available for various invasion models
  • Flexibility of sample type: total mixed RNA, infected host cells, etc.
  • UMI technology allows small amounts of input template

Dual RNA-seq Workflow

Dual RNA-seq
Generic Pipeline of Dual RNA-seq Data Analysis (figure from V. Arluison et al., 2018)

Dual RNA-seq


  1. Alexander J. Westermann, et al., Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature. 2016, vol. 000.
  2. Alexander J. Westermann, et al., Resolving host–pathogen interactions by dual RNA-seq. PLoS Pathog. 2017, 13(2).
  3. Véronique Arluison and Claudio Valverde (eds.), Bacterial Regulatory RNA: Methods and Protocols. Methods in Molecular Biology. 2018, vol. 1737.
  4. Pisu et al., Dual RNA-seq of Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen interactions. Cell Reports. 2020, vol. 30.
For Research Use Only. Not for use in diagnostic procedures.
Quote Request
! For research purposes only, not intended for personal diagnosis, clinical testing, or health assessment.
Contact CD Genomics
Terms & Conditions | Privacy Policy | Feedback   Copyright © CD Genomics. All rights reserved.